The effect of stathmin phosphorylation on microtubule assembly depends on tubulin critical concentration.
نویسندگان
چکیده
Stathmin is a phosphorylation-regulated tubulin-binding protein. In vitro and in vivo studies using nonphosphorylatable and pseudophosphorylated mutants of stathmin have questioned the view that stathmin might act only as a tubulin-sequestering factor. Stathmin was proposed to effectively regulate microtubule dynamic instability by increasing the frequency of catastrophe (the transition from steady growth to rapid depolymerization), without interacting with tubulin. We have used a noninvasive method to measure the equilibrium dissociation constants of the T(2)S complexes of tubulin with stathmin, pseudophosphorylated (4E)-stathmin, and diphosphostathmin. At both pH 6.8 and pH 7.4, the relative sequestering efficiency of the different stathmin variants depends on the concentration of free tubulin, i.e. on the dynamic state of microtubules. This control is exerted in a narrow range of tubulin concentration due to the highly cooperative binding of tubulin to stathmin. Changes in pH affect the stability of tubulin-stathmin complexes but do not change stathmin function. The 4E-stathmin mutant mimics inactive phosphorylated stathmin at low tubulin concentration and sequesters tubulin almost as efficiently as stathmin at higher tubulin concentration. We propose that stathmin acts solely by sequestering tubulin, without affecting microtubule dynamics, and that the effect of stathmin phosphorylation on microtubule assembly depends on tubulin critical concentration.
منابع مشابه
Stathmin/Op18 phosphorylation is regulated by microtubule assembly.
Stathmin/Op 18 is a microtubule (MT) dynamics-regulating protein that has been shown to have both catastrophe-promoting and tubulin-sequestering activities. The level of stathmin/Op18 phosphorylation was proved both in vitro and in vivo to be important in modulating its MT-destabilizing activity. To understand the in vivo regulation of stathmin/Op18 activity, we investigated whether MT assembly...
متن کاملRETRACTED: Drosophila Stathmin Is Required to Maintain Tubulin Pools
Stathmin, or Oncoprotein 18 (Op18), is the founding member of a phosphoprotein family that can regulate the microtubule cytoskeleton by sequestering tubulin and promoting microtubule catastrophe [1–3]. Stathmin is subject to spatially and temporally controlled regulatory phosphorylation, which inhibits its interaction with tubulin [4–6]. Drosophila Stathmin has similar properties to the mammali...
متن کاملDrosophila Stathmin Is Required to Maintain Tubulin Pools
Stathmin, or Oncoprotein 18 (Op18), is the founding member of a phosphoprotein family that can regulate the microtubule cytoskeleton by sequestering tubulin and promoting microtubule catastrophe. Stathmin is subject to spatially and temporally controlled regulatory phosphorylation, which inhibits its interaction with tubulin. Drosophila Stathmin has similar properties to the mammalian proteins....
متن کاملThe stathmin protein binds to tubulin and inhibits microtubule assembly and promotes microtubule catastrophes (8,9). Overexpression of stathmin can lead to disassembly of microtubules
Patients with temporal lobe epilepsy have inexplicable fear attack as the aura. However, the underlying neural mechanisms of seizure‐modulated fear are not clarified. Recent studies identified stathmin as one of the key controlling molecules in learning and innate fear. Stathmin binds to tubulin, inhibits microtubule assembly and promotes microtubule catastrophes. Therefore, stathmin is predict...
متن کاملThe stathmin phosphoprotein family: intracellular localization and effects on the microtubule network.
Stathmin is a small regulatory phosphoprotein integrating diverse intracellular signaling pathways. It is also the generic element of a protein family including the neural proteins SCG10, SCLIP, RB3 and its two splice variants RB3' and RB3". Stathmin itself was shown to interact in vitro with tubulin in a phosphorylation-dependent manner, sequestering free tubulin and hence promoting microtubul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 277 25 شماره
صفحات -
تاریخ انتشار 2002